K-Theory and stable algebra
نویسندگان
چکیده
منابع مشابه
Topics in Noncommutative Algebraic Geometry, Homological Algebra and K-theory
This text is based on my lectures delivered at the School on Algebraic K-Theory and Applications which took place at the International Center for Theoretical Physics (ICTP) in Trieste during the last two weeks of May of 2007. It might be regarded as an introduction to some basic facts of noncommutative algebraic geometry and the related chapters of homological algebra and (as a part of it) a no...
متن کاملHopf Algebra Equivariant Cyclic Cohomology, K-theory and Index Formulas
For an algebra B with an action of a Hopf algebra H we establish the pairing between equivariant cyclic cohomology and equivariant K-theory for B. We then extend this formalism to compact quantum group actions and show that equivariant cyclic cohomology is a target space for the equivariant Chern character of equivariant summable Fredholm modules. We prove an analogue of Julg’s theorem relating...
متن کاملRelative Homological Algebra, Waldhausen K-theory, and Quasi-frobenius Conditions
We study the question of the existence of a Waldhausen category on any (relative) abelian category in which the contractible objects are the (relatively) projective objects. The associated K-theory groups are “stable algebraic G-theory,” which in degree zero form a certain stable representation group. We prove both some existence and nonexistence results about such Waldhausen category structure...
متن کاملEquivariant K-theory, generalized symmetric products, and twisted Heisenberg algebra
For a space X acted by a finite group Γ, the product space X affords a natural action of the wreath product Γn = Γ n ⋊ Sn. The direct sum of equivariant K-groups ⊕ n≥0 KΓn(X )⊗C were shown earlier by the author to carry several interesting algebraic structures. In this paper we study the Kgroups K H̃Γn (X) of Γn-equivariant Clifford supermodules on X . We show that F Γ (X) = ⊕ n≥0 H̃Γn (X)⊗ C is ...
متن کاملStable Algebraic Topology and Stable Topological Algebra
Algebraic topology is a young subject, and its foundations are not yet firmly in place. I shall give some history, examples, and modern developments in that part of the subject called stable algebraic topology, or stable homotopy theory. This is by far the most calculationally accessible part of algebraic topology, although it is also the least intuitively grounded in visualizable geometric obj...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications mathématiques de l'IHÉS
سال: 1964
ISSN: 0073-8301,1618-1913
DOI: 10.1007/bf02684689